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Random Walks with Short Memory 
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A restricted random walk on a d-dimensional cubic lattice with different 
probabilities for forward, backward, and sideward steps is studied. The analytic 
solution for the generating function, exact expressions for the second and fourth 
moments of displacements, and diffusion and Burnett coefficients are given, as 
well as a systematic asymptotic expansion for the probability distribution of 
long walks. 

KEY WORDS: Restricted/correlated random walks; forward/backward jump 
models; random walks with persistence. 

1. I N T R O D U C T I O N  

There exist many  r andom walk (RW) models in which the next step is 
influenced by one or  a few previous steps. Such correlated RWs are 
Markov  processes described by the C h a p m a n - K o l m o g o r o v  or  master  
equat ion (1) for the probabil i ty density that  depends on the presently as well 
as on the previously occupied sites. Fo r  a recent review the reader is 
referred to Haus  and Kehr. (2) 

Such models are, in general, of interest in connect ion with the statistics 
of long-chain molecules or with t ranspor t  in crystals, and in particular in 
connect ion with lattice models or cellular au tomata  for Lorentz  gases. (3) In 
the latter case a r a n d o m  fraction of  lattice sites is filled with scatterers; the 
walker moves a long straight lines and is deflected at scattering sites 
according to deterministic or  stochastic scattering rules. The correlated R W  
models often provide reference models in the limits of high and/or  low 
concentra t ion of  scatterers. 

The models of  interest in this paper  are nearest neighbor  hopping  
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models on hypercubic lattices with memory over two successive steps only; 
namely, the RW has probabilities e, fl, and 7 for forward, backward, and 
sideward steps, respectively. The model with reduced reversals or backward 
jump model ( f l r  was solved long ago by Domb and Fisher. (4) 
Reference 3 seems to suggest that in more general cases, where the master 
equation for the probability distribution is a system of 2d coupled linear 
equations, one needs to rely on numerical, rather than analytical, methods. 

Recently, however, Claes and van der Broeck (5~ solved the forward 
jump model ( ~ r  They observe that the structure of the master 
equation for their model is analogous to the BGK model in kinetic theory. 
The relationship with kinetic theory is even closer in the limit of large coor- 
dination numbers, where the transition kernel in the master equation 
approaches in fact the Lorentz-Boltzmann collision operator for the three- 
dimensional Lorentz gas. The solution of ref. 5 for the Fourier-Laplace 
transform of the probability distribution in this limiting case was derived 
by Hauge (6) using the same method. 

The purpose of the present paper is to solve the general case of an 
RW with correlated nearest neighbor jumps on a hypercubic lattice by 
combining the methods of refs. 4 and 5. For this case, exact results have 
already been published for the mean square displacement. (7) 

The plan of the paper is as follows: in Section 2, I calculate the 
generating function for the probability distribution from the master 
equation; exact results for the distribution are given in Section 3; moments 
and transport coefficients are calculated in Section 4; Section 5 uses a 
saddle point method to develop an asymptotic series for the probability 
distribution; and Section 6 deals with eigenvalues and eigenmodes of the 
master equation. I conclude with some additional remarks. 

2. C H A P M A N - K O L M O G O R O V  E Q U A T I O N  

Let P~(n, t) be the probability that the RW arrives at site n on the tth 
step ( t = 0 ,  1, 2,...), coming from site n - v  or, equivalently, having a 
"velocity" v at arrival. Here n = (nx, ny ..... rid) is a site of a d-dimensional 
cubic lattice having unit lattice distance and N sites in total; labels v, /t 
refer to the 2D nearest neighbor lattice vectors: +~x, -~x ,  +~y, 
- ~  ..... +dy, - ~ y  ..... +Od, --~d" A summation over all previous history of 
the RW gives the total probability for a displacement n in t time steps, 
P(n, t) = Zv Pv(n, t). 

The conditional probability satisfies the master or Chapman-  
Kolmogorov equation 

P v ( n , t + l ) = ~ P v ( n - v , t ) + f l P  ~ ( n - v , t ) + 7  ~ P v , ( n - v , t )  (1) 
v '  v 6 + v  
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with initial condition P~(n, 0)=6~o/2d, since all incident velocities are 
equally probable. The probabilities for a forward step, c~---7+e, a 
backward step, /? = 7 -  ~, and a sideward step, 7, are normalized as 

e + / ~ + 2 ( d -  1)7= 1 or 2d7= 1 + 6 - e  (2) 

I define the corresponding generating functions G(q, s) of P(n, t) and its 
Mellin transform F(q, t) as 

t = O  t = O  n 

(3) 

and similarly for G~(q, s) and F~(q, t) in terms of P~(n, t), where nq= 
~ = x  n~q~ is a scalar product. Then Eq. (1) becomes 

G ~ -  1/2d= ese-iq~G~- c~se iq~G ~ + 7se iq~G (4) 

For the unrestricted RW (e = 6 = 0), summing this equation over v directly 
yields the standard result for the generating function G = ( 1 -  ~bs) -~ where 
~b(q) is the generating function for the first step: 

d 

~b(q) = (1/2d) ~ e -~q~ = (l/d) ~ cos q~ 
v ~ = x  

In Claes and Van den Broeck's method for the forward jump model 
(6 = 0), Eq. (4) is solved for G~ in terms of G. Subsequent summation over 
v yields a closed form for G(q, s). Domb and Fisher's method for solving 
the backward jump model (e = 0) is equivalent to combining Eq. (4) for v 
and - v, eliminating G ~, which yields Gv in terms of G, and proceeding as 
above. In the general case, I follow the same procedure and write Eq. (4) as 

t " iqv 
6se iq~ 1 -- eseiqV/\G_~/ \ 1/2d+ yseiq~G J (5) 

Solving for Gv and summing for v yields the following result for the 
generating function: 

G(q, s) = F/A 

d 
F =  (l/d) ~ (1 - asc~)/[1 - (a + b) sc~ + abs 2] (6) 

d 

A = (l/d) ~ [1 - (1 + a) sc, + as2]/[1 - (a + b) sc~ + abs z] 
ct~x 
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where ca = cos q~ (e = x, y,..., d) and 

a = e - f l = e + 6 ,  b = ~ + f l - 2 ~ : = e - 6  (7) 

For the backward jump model ( a = - b = 6 ) ,  the generating function 
reduces to the result of ref. 4: 

G(q, s) = (1 - 6s(b)/[1 - (1 + 6) s~b + 6s 2] (8) 

For  the forward jump model (a = b = e), Eq. (6) can also be written in the 
somewhat simpler form of ref. 5: 

~ 1/(1--gse - i q v )  

G(q, s) = Zv (1 - se-iq~)/(1 - ese -iqv) (9) 

where the v sum runs over the nearest neighbor vectors. 

3. E X P A N S I O N S  OF THE G E N E R A T I N G  F U N C T I O N S  

To obtain P(n, t), one has to extract the Mellin transform F(q, t) as 
the coefficient of s' in the s expansion of G(q, s) [-see Eq. (3)] and invert 
the Fourier transform. Domb and Fisher have obtained expansions of 
F(q, t) as finite polynomials in ~b(q), that is, in the generating functions for 
unrestricted walks [see their Eq. (40)]. An analogous result can be 
obtained for the forward jump model by expanding Eq. (9) in powers of s, 
with the result 

with 

m = 1 { l l }  i =  1 

d 

~b,(q) : (1/2d) ~ e-iqu'= (l/d) ~ cos lq~ 
v ~ = x  

The prime on the summation sign indicates that the sum runs over par- 
titions {li} with l I + [2 + " ' "  + l m  = t and li>~ 1. For  the general case (6), I 
have not found any tractable form. 

4. M O M E N T S  A N D  T R A N S P O R T  COEFFIC IENTS 

In order to compute the mean square end-to-end distance of a t-step 
restricted walk and other moments of the distribution, I expand the rhs of 
Eq. (3) in powers of q~ (c~ =x ,  y,..., d) to obtain 
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G(q, s) = (1 - s ) - '  - (1/2) ~ q~q~(n~n~)(s) 

+ (1/24) ~ q~qeqTq6(n~n~nTn6)(s)+ ... 

= (1 - s ) - '  - (1/2)(n2)(s) Z q~ + (1/24)(n4)(s) Z q4 

+ (3/24)(n~n2y) Z~q~q~+Z 2 ...  (10) 

Here (n~n~...)(s) is the Mellin transform of the moment of displacement 
(n~n~. . . ) ,  after t steps. The simplification in the last line is a consequence 
of the cubic symmetry, which implies that there exists only one independent 
second moment (n~n~)= ( n ~ ) 6 ~  and only two fourth moments, (n  4) 
and 2 2 (nxny). After performing a q expansion of G(q, s) in Eq. (6), I find 
with the help of (10) for the Mellin transforms of the moments 

(n~)(s)  = (l/d) s(1 + as)(1 - s)-Z (1 - as)- '  

(nZn~)(s) = (2/d2)(1 - b) s2(1 + as) 2 (1 - s)-3 (1 - as) -2 (1 - bs)-I 
(11) 

(n4) (s)=(n~) (s)+3 2 2 (nxny)(S) 

+ (6/d)(a + b) sZ(1 + as)(1 - s)-2 (1 - as) -2 (1 - bs) 1 

The inverse Mellin transform is given by the following integral in the 
complex s plane along a closed counterclockwise contour Co around s = 0: 

ds t 
(n~n~. . . ) t=~ - - s  l(n~n~.. .)(s) (t2) 

Co 27ri 

As the integrands vanish sufficiently fast for (s) ~ ~ ,  the integrals can be 
replaced by the sum of integrals around the closed clockwisecontours C~, 
C~, and Cb around the multiple poles of the integrand, located s =  1, 
s= i/a, and s =  l/b, respectively. After lengthy but straightforward 
calculations, I find 

2 =d 1 - a  l _ a 2  j (13a) 
(nx) ' 1 1 +a 2a_(1--a'!] 

:__1{'1+a'~2[ ( 8 a  l+b) 
(n2n2)t d 2 \ l _ a J  t 2 - t  1---Z~+-~--~/ 

8a(1 + 2a) 8ab + ~- 
(1--a2) 2 (1--a2)(1 - b )  

8 ( l - b )  # +2 ( l + 2 a  
- d 2 ( 1  - a )  3 ( a - b )  t-F 1 - a  

b "~ 2 (a+b)2b '+1 
a - b }  -- d2 (1--- b-~ ( - ~ -  b-) 2 

(13b) 
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<n4>t  3 2 2 2 - <n~ny>,-- <nx> ~ 

6 ( a + b ) ( l + a )  I a ( 3 + a )  1 1 6(a+b)2b'+l 
t 1_a2 l - b  +d(a-b)2(l-b) 

12(a+b) at+l [ 3 + a  a ] (13c) 
+ d-~Ta) 2 ( a - b )  t + 2 ( 1 - a )  a - b  

The pole at s = 1 yields contributions to the moments that are linear or 
quadratic polynomials in t; the poles at 1/a and 1/b yield exponentially 
decaying terms a' and b t, where Eqs. (2) and (7) imply that lal and Ibl are 
smaller than unity. In fact, if I combine the probabilities c~, /3, and 7 for a 
transition from "velocity" /~ to "velocity" v into a 2d-dimensional matrix 
Wv,, it has only three different eigenvalues due to cubic symmetry, namely: 
1 (nondegenerate), a (d-fold degenerate), and b [ ( d - 1 ) - f o l d  degenerate]. 

The result (13a) for the second moment holds for all models con- 
sidered and has been derived in refs. 3-6. Higher moments, viz. <n4>t and 
<n6>t, have only been calculated for the forward jump model,(5) which has 
the accidental degeneracy a = b. To obtain similar results for this model 
from (13b) and (13c), I cannot simply set a=b, because of factors 
( a - b )  -2 and ( a - b )  -1. However, if one sets b = a ( 1  + q )  and expands the 
coefficients in (13b) and (13c) in powers of ~/, then the singular terms 
proportional to ~/-2 and q-x cancel. To obtain explicit expressions for the 
forward jump model, it is easier to set a=b in Eq. (11) and invert the 
Mellin transforms directly. 

As the displacement or end-to-end distance n after a large number of 
steps t is a Gaussian random variable, its probability distribution 
approaches a Gaussian of which all cumulants vanish except the second. 
The long-time behavior of the cumulants is therefore a measure of the 
approach to the limiting distribution. It is found that the 2mth moment 

2m t m (n x >, increases as at large t, whereas the corresponding cumulant 
((nZx m))t only increases linearly with t. The coefficients of these linear terms 
define the diffusion coefficient D, Burnett coefficients Bxx and Bxy, super- 
Burnett coefficients, etc., in the following manner: 

(1/2)(n2>, "~ Dt 

(nx>, ) -Bxy t  (3/24)((n2n2y>_ 2 2 ~ 

(1/24)( 4 2 2 - 3 ( n x > , )  t <nx), "~Bxx 

Because of the cubic symmetry there are two different Burnett coefficients; 
in case of isotropic symmetry there is only one. The values of these 
transport coefficients here are 
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D = (1/2d)(1 + a)/(1 - a) 

Bxy = -(1/2)  D214a/(1 - a 2) + (1 + b)/(1 - 6)3 

Bxx = Bxy + (1/12) D{ 1 + 6(a + b)/[(1 - a)(1 - b)] } 

(14) 

5. A S Y M P T O T I C S  FOR T H E  P R O B A B I L I T Y  D I S T R I B U T I O N  

As already mentioned in Section 4, the probability distribution P(n, t) 
of the end-to-end distance approaches a Gaussian at large t. I want to 
study this approach. 

For long walks the typical end-to-end distance InL increases like x/ t .  
In the coupled "diffusive" limit with Inl and t large and [nl2/t fixed, one can 
obtain the asymptotic behavior of P(n, t) as a systematic expansion in 
powers of lit. The starting point is the inversion of Eq. (3): 

P ( n , t ) = ( 2 n ) - d f  ~ . . . f  d'd'qe-i"q(2ni)-l~c d s s - ' - l G ( q , s )  (15) 
- - I t  0 

The counterclockwise contour Co around s = 0 can be replaced by the sum 
of the clockwise contours around the poles si(q) of G(q, s). The dominant 
large-t contributions come from regions around saddle points qo, where 
in ]si(q)] oc Iq-qo[ 2. In cases with cubic symmetry there are two saddle 
points, (4) one located at the origin, qo= (0, 0,..., 0), and the other at the 
corner of the first Brillouin zone, qo = (n, n ..... n). The contribution from 
the saddle point at (re, ~ ..... n) is equal to the contribution from the saddle 
point at (0, 0,..., 0) multiplied by a factor exp[in(t + Z~ n~)], as can be seen 
by changing integration variables q '~=n-q~  and using the symmetry 
G(n - q~, s) = G(q~, - s ) .  Thus, it follows that P(n, t) vanishes identically if 
(t + Z~ n~) is odd, and is twice the contribution from the saddle point at 
(0, 0,..., 0) for ( t + Z ~  n~) even. Thus, we consider only the latter saddle 
point. 

For the unrestricted RW the generating function G(q,s)= 
[ 1 -s~b(q)]-  1 has only a single pole at So = 1/~, the contour integral yields 
[~b(q)] t, and the saddle point method can be applied at large t. (7) In the 
backward jump model, G(q, s) in Eq. (8) has two poles, one of which 
satisfies In ]s0(q)] ocq 2. The contour integral can be calculated and the 
saddle point method applied in a straightforward manner. (4) 

An equivalent procedure that will be used for the general case (6) is 
the following. Only the pole, say so(q), with the saddle point at q = 0 is 
relevant. It is thus sufficient to represent G(q, s) in the vicinity of the pole 
as G(q, s) = Ro(q) / [ s -  so(q)]. To calculate the leading behavior of P(n, t), 
one only needs the value of the residue at q = 0 and the location of the pole 
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accurate to terms of order q2 included. The resulting asymptotic form is the 
Gaussian 

P(n, t) = (4nDt)-d/2 exp(-nZ/4Dt) 

To find the subleading corrections proportional to l/t, one has to calculate 
the residue up to O(q 2) terms included and the location of the pole up to 
O(q 4) included. 

In the general case, I follow the method sketched above. The 
generating function in (6) has 2d poles. Denoting the relevant pole again by 
so(q), I obtain from (6) for residue and location 

Ro(q) = so(q)[1 + (q2/d)a/(1 - a) 2] 
(16) 

so(q) = 1 + Dq 2 + 3q 4 

where D is the diffusion coefficient (14) and 

Aq 4 = (Dqa/Zd){(1 + a)/(1 - a) 2 + (a + b)/[(1 - a)(1 - b)] } 

- ~ (Dq4/12){ 1 + 6(a + b)/[(1 - a)(l - b)] } 

After some algebra, I finally obtain the asymptotic expansion for the 
probability distribution (for t + ~ n~ even): 

exp ( - n 2/4D t) 
P(n, t ) = 2  (4~ Dt) a/2 

{ ~(1--~aX~ 2 2(a-Jc-b) ~ 814 
x 1-k\l---Z-d] -t- ( 1 - a ) ( 1 - b ) J 6 4 d D 3 t  3 

+ 1-~ ( 1 - a ) - 0  --- b) 192D3t 3 

l + 2 d a + a  2 ( d - 1 ) ( a + b ) ]  n 2 
+ (1 - a) 2 O---a)-(i- 2b-~ ] 8dD2t 2 

[ l + 2 ( d - 1 ) a + a  2 2 ( d - 1 ) ( a + b ) ]  1 } 
- + -d-d)-(f_-Ejg-Nt+o(t-2) (17) 

This expression gives the asymptotic form of the distribution function for 
the end-to-end distance n after a large number of steps t. It reduces to 
Domb and Fisher's result for the backward jump model if a = - b  = 6. 

For the 'forward jump model (a = b = e), Claes and Van den Broeck 
study the approach of P(n, t) to the Gaussian limit by only considering the 
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approach of the fourth and sixth moments to this limit. Here the approach 
of the full distribution to this limit is given by restricting Eq. (17) to the 
forward jump model and by replacing the coordination number 2d by N in 
the notation of ref. 5 and the step probabilities ~ = ~ + e by p and/3 = 7 by 
( 1  - p ) / ( N -  1 ). 

Another moment of interest in polymer statistics is the inverse 
hydrodynamic radius of gyration (]nl -~ ), which approaches its Gaussian 
limiting form (6/re (n 2 )) - 1/2 = (~ D t ) -  ~/2. This approach has been studied 
in ref. 5 from an expansion of P(n, t) in Hermite polynomials that is slowly 
convergent. Here, ( In]-1)  is obtained from Eq. (17) in a simple manner by 
integrating n over three-dimensional Euclidean space, with the result at 
large t 

( [n l -1)  = (re Ot) -1/2 (1 "~ A/t  + . . . )  

with an explicit expression for A. 

7. E I G E N M O D E S  OF T H E  C H A P M A N - K O L M O G O R O V  
E Q U A T I O N  

One may want to study the relaxational modes of the Chapman- 
Kolmogorov equation, defined as 

f~;)(n, t + 1) = s; . f~)(n,  t) = sl  + l f~) (n)  

Because of translational invariance, the eigenmodes have the form f~)(n) = 
f~;')(q) e iqn and the eigenvalue equation is 

s~(q)f~ = ~ e --iqv WvpL (18) 

where the transition 2d• 2d matrix W~ has been defined below Eq. (13). 
At q = 0 it has only three different eigenvalues because of cubic symmetry. 
They are given together with the corresponding 2d eigenvectors: 

So(0) = 1; f~ = 1 

s l (0)=a;  f v = 6 v . ~ - 6 v ,  ~ (c~=x, y ..... d) (19) 

s2(0)=b; fv=d(~v~+6v. ~ ) -1  ( a = x , y  ..... d - l )  

For nonvanishing q the eigenvalues are given by the poles of G(q, s) 
calculated in Eqs. (6), (8), and (9). In the saddle point method of Section 6 
the eigenvalue so(q) of the diffusive mode was explicitly calculated in 
Eq. (16) for small q values. 
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8. C O N C L U D I N G  R E M A R K S  

(i) Continuous-time random walks with a Poissonian waiting time 
distribution are described by the master equation. For the restricted RWs 
of Eq. (1), the continuous-time versions are obtained by replacing 
Pv(n, t+ 1) in Eq. (1) by pv(n, t)+@v(n, t)/•t. The exact solution Pv(n, t) 
of the discrete-time RW in Eq. (1) and its continuous-time analog are 
related by (3) 

pv(n, t )=e  ' ~ Pv(n, ~)tTz! 
r = 0  

The dominant long-time behavior of the probability distribution and its 
moments is the same for the discrete- and continuous-time cases. 

(ii) The generating function for walks commencing and/or finishing 
in a specified direction can also be calculated. In fact, in solving Eq. (5), I 
obtained as an intermediate result an expression for the generating function 
Gv(q, s) of walks finishing with "velocity" v. It was expressed in terms of 
G(q, s), calculated in Eq. (6). To obtain the generating function for walks 
commencing in a specified direction, one needs the backward CK 
equation (1) instead of the forward one, as given in Eq. (1). 

(iii) The restricted RWs can be extended slightly to include states of 
rest. ~ Let the RW have probabilities a and # to go, respectively, from a 
moving state to a state of rest and vice versa, and a probability a'  to 
remain in a state of rest, with normalization 

a + ~ + / 3 + 2 ( d -  1)7 = 1, a ' + 2 d # =  1 

Then, the transition matrix Wv~ is a (2d+ 1)-dimensional matrix where the 
labels include the state of zero velocity as v,/~ = 0. 

The stationary solution of Eq. (1) for the RW without a rest state is 
the normalized eigenvector in Eq.(19) with eigenvalue s0(0)=l ,  
viz. P~(n, oo)=l /2d .  For the RW with a rest state, Pv(n, oo) = 
p6~o + q(1 -6~o). This is the right eigenvector with unit eigenvalue of the 
nonsymmetric matrix W~. In the present case W~ has four distinct eigen- 
values, one of which is d-fold and one of which is ( d -  1)-fold degenerate 
due to the cubic symmetry. 

The corresponding Champan-Kolmogorov equation has to be solved 
with initial condition P~(n, O)= 6noPv(oo). For the general case there is no 
simple solution, but a few special cases, such as nonvanishing #, a, and a' 
and c~ =/3 = ?, can be reduced to two coupled equations as in Eq. (5) and 
can be solved similarly. More general choices of the model parameters 
make the equations quickly untractable using the present method. 
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